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ABSTRACT

Yellow dwarf viruses are the most economically important and devastating viruses affecting cereal crops, resulting in
yield and quality losses. Because of recent global climate change, there has been an increase in vector-borne viruses,
particularly yellow dwarf viruses transmitted by aphids. YDVs comprise a complex group that includes barley yellow
dwarf viruses (BYDVs)/cereal yellow dwarf viruses (CYDVs), as well as newly renamed species. One of the most
effective control methods for YDVs is to grow resistant or tolerant cultivars, in addition to late sowing, spraying and
covering seeds with insecticides to control aphid vectors, as well as other cultural practices. Resistance to BYDV is
complex, and numerous studies have been conducted to date in many efforts to develop resistant cultivars and lines
to manage YDVs. Those studies included BYDV resistance derived from wheat-related and wild relatives, as well as
resistance attained against aphids. This review will examine breeding studies addressing BYDV resistance in cereals,

including wheat, barley, oats, and maize, to date.
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Introduction

Yellow dwarf viruses (YDVs) are the most
economically important and devastating viruses,
causing yield losses in cereal crops worldwide. YDV's
infect cereal species, such as wheat, barley, and oats, as
well as many annual and perennial monocotyledonous
grasses in the Poaceae family (D’ Arcy, 1995). YDVs
have also been found to infect dicotyledonous grasses,
Geranium dissectum and Juncus compressus, in recent
years (Ilbagi et al., 2019). They are characterized
by yellowing or reddening, depending on the hosts,
dwarfing, delayed heading, and reduced cereal grain
numbers. Characteristic symptoms include stunted
growth of the host, resulting from diminished internode
elongation. The discoloration is pervasive on older
infected leaves (Oswald and Houston, 1953). Wheat,
triticale, and rye leaves are commonly yellow, and
sometimes they are red. It has been reported that
serration along the leaf margins in wheat and oats,
apart from inhibiting root growth, was observed in

plants infected with YDV (Kolb et al., 1991; Hoffman
and Kolb, 1997). YDV infection may be confused
with symptoms of abiotic stress in plants. Thus, the
diagnostic methods should confirm the visual diagnosis
of YDV infections. YDVs affect yield by causing
sterility, suppressing heading, and reducing the number
of tillers and kernels per spike (D’Arcy, 1995). It can
cause severe losses, especially in wheat, depending on
the YDV species, wheat varieties, weather conditions,
and aphid populations. YDVs are phloem-limited and
are transmitted in a persistent circulative manner by
over 25 aphid vectors. The most common vectors
of BYDV are Rhopalosiphum padi, Rhopalosiphum
maidis, Sitobion avenae, Metopolophium dirhodum,
Schizaphis graminum, and Sitobion fragariae (Parry
etal., 2012). Among them, Rhopalosiphum padi L. and
Rhopalosiphum maidis Fitch are the most common and
efficient species (Smith and Plumb, 1981). The bird
cherry-oat aphid, Rhopalosiphum padi L., is a frequent
vector of BYDYV species (Halbert and Voegtlin, 1995).
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The mechanisms associated with YDV infections in
the field conditions are complex and influenced by
many factors. Given the direct interactions among
viruses, aphid vectors, and cereal host plants, it is also
crucial to investigate the presence of grass hosts in
these agroecosystems (Power and Gray, 1995). After
BYDYV was named by Oswald and Houston (1953)
in California/USA, Rochow (1969) identified five
serotypes, classified by their preferred aphid vector
species. YDVs comprise a complex virus group,
including barley yellow dwarf viruses (BYDVs)/
cereal yellow dwarf viruses (CYDVs), as well as
newly identified species such as MYDV-RMV and
WYDV-GPV (Krueger et al., 2013; Zhang et al.,
2009). YDVs cause yield losses of 15-25% in wheat,
barley, and oats (Lister and Ranieri, 1995; McKirdy
and Jones, 1997). It has been reported that YDVs
caused 30% losses in wheat in the UK (Perry et al.,
2000) and 80% losses in early-planted winter wheat
in Tiirkiye (Ilbagi, 2020). Nancarrow et al. (2021)
pointed out that BYDV-PAV caused yield reductions
of up to 84% (1358 kg/ha) in wheat and 64% (1456
kg/ha) in barley. Disease control strategies could
also be partially achieved by applying insecticides,
crop rotation, removing virus reservoirs, avoiding
frequent sowing, and using germplasm with tolerance/
resistance to the virus or its vectors (Royer et al., 2005;
Kennedy and Connery, 2012). Chemical application
for controlling aphid populations is an effective and
easy method; however, it is not economic. Due to the
negative environmental and other organism impacts,
the use of pesticides is restricted in certain regions
of the world (McNamara et al., 2020). Moreover,
specifically, once symptoms become obvious, it
would already be too late to control the vector. On the
other hand, the sowing of resistance/tolerant varieties
adapted to each location (i), late sowing; as of second
week of November for the Trakya region, Tiirkiye
(i1), combating of weeds as inoculum sources (iii),
rotation; avoiding planting wheat after other cereal or
maize crops (iv), avoiding of planting with stubble in
the cereal fields (v), and avoiding of frequent sowing
were suggested to combat YDVs by ilbag1 (2020). In
this respect, late sowing is a crucial cultural practice for
combating YDVs. Thanks to the late sowing of wheat,
YDVs have been successfully managed in the Trakya
region of Tiirkiye (ilbag1, 2020). As shown in Figure
1, the importance of late sowing for controlling YDV's
is evident based on late- and early-sowing wheat fields
in Trakya/Tirkiye. Similarly, the studies worldwide
have shown that late sowing is important for controlling
YDVs. McKirdy and Jones (1997) noted that delaying
sowing reduced BYDYV incidence in wheat. Aghnoum
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et al. (2017) indicated that late planting plays a crucial
role in escaping BYDYV infections in the BYDV hot
spot region. Foster et al. (2004) noted that virus and
aphid incidence may be associated with crop and field
characteristics, particularly sowing date. Sowing winter
cereals and correctly timing insecticide applications are
critical components of BYDV management, as reported
by Walsh et al. (2022). On the other hand, breeding
resistant or tolerant varieties is the most effective
method for controlling YDVs and is a cost-effective
approach for controlling BYDYV, as reported by Ordon
et al. (2004). Arodittir and Crespo-Herrera (2021)
noted that challenges and opportunities in resistance
to BYDV and its vectors in wheat breeding programs
and indicated the importance of identifying resistance
sources for Host Plant Resistance (HPR).

BYDYV resistance in wheat

Four primary genetic sources of resistance in
wheat, three of which are derived from the secondary
gene pool (species which are progenitors of the three
hexaploid wheat genomes: e.g., T dicoccoides, T.
dicoccum, Aegilops tauschii), though no resistance
is known in the primary wheat gene pool. Bdvl,
Bdv2, Bdv3, and Bdv4 resistance genes, which have
been reported in wheat; however, their introduction
into commercial cultivars has not been effective
(Ayala et al., 2001; Kosova et al., 2008). Previous
studies have reported that true resistance to BYDV
has not been naturally found in wheat; however,
BYDYV resistance genes have been identified in
more than 10 wild relative species belonging to the
genera Thinopyrum, Agropyron, Elymus, Leymus,
Roegneria, and Psathyrostachy (Zhang et al., 2009).
Some Thinopyrum species are widely used as sources
of combined resistance to BYDV and various rusts
in wheat breeding programs (Larkin et al., 1995).
Evaluation of resistant sources carrying the Bdvi and
Bdv2 genes suggests a polygenic nature for BYDV
resistance (Ve“skrna et al., 2009). The only exception
among other genes is the Bdv/ gene, a semidominant
gene, which was detected in the North American bread
wheat cultivar Anza. Although BdvI confers tolerance
to BYDV-MAY based on field observations, it does
not confer resistance to all BYDV serotypes or across
all environments. Bdvi for a “tolerance” known as
“partially effective” and conferring “slow yellowing
of infected leaves”. Bdvl was reportedly associated
with the Lr34/Yri8 rust resistance gene complex on
7DS, which is also associated with a leaf tip necrosis
trait (Singh et al., 1993). Tolerance to BYDV in wheat,
which reduces crop losses at high virus concentrations,
has been reported to be polygenically controlled (Cisar
et al., 1982). A QTL located in the same position as
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Bdvl accounted for approximately 7% of the total
variability, like the polygenic nature of BYDV
tolerance in wheat (Ayala et al., 2002). Additionally,
Bdv1 was reported to be associated with the Lr34/Yri18
rust resistance gene complex on 7DS, which is also
associated with a leaf tip necrosis trait and powdery
mildew resistance (Singh et al., 1993; Spielmeyer et
al., 2005). Ayala et al. (2002) indicated that, despite
Anza having reduced visual symptoms, especially
yellowing, no statistically significant differences were
found between genotypes in any of the measures of
disease effects. The presence or absence of the Lr34/
Yri8 complex was determined by Lagudah et al. (2006;
2009). Previous studies have shown that Bdv1, linked
with the Lr34/Yr18 gene complex, may reduce visible
symptoms of BYDYV infection; however, there is limited
evidence that it is effective in preventing grain or
biomass yield losses. The first BYDYV resistance gene
in Thinopyrum intermedium was identified in a disomic
chromosome addition line, L1, derived from the wheat-
Th. intermedium partial amphiploid TAF46 (Cauderon
et al., 1973). This gene was located on the long arm
of homoeologous group 7 chromosome 7XL (7Ai#IL)
of Th. intermedium (Brettell et al., 1988; Xin et al.,
1991), and was designated as Bdv2 (Zhang et al., 1999;
Stoutjesdijk et al., 2001). Some wheat-Th. intermedium
translocation lines, such as the Yw series, that show
good BYDV resistance, were developed using the CS
ph mutant (Xin et al., 2001). Banks and Larkin (1995)
transferred the alien chromatin carrying Bdv2 from
L1 to the common wheat background and developed
several wheat-Th. intermedium translocation lines,
including 7D-7Ai#1 recombinants (e.g., TC5-TCS6,
TC8-TC10, and TC14), and one 7B-7Ai#1 translocation
(TC7) (Banks and Larkin 1995; Hohmann et al., 1996;
Larkin et al., 2002). These lines were used to produce
resistant wheat cultivars with Bdv2, such as a winter
wheat, Mackellar (with TC14), and a spring wheat,
Glover (with TC6) in Australia (Larkin et al., 2002).
Some Th. intermedium - Th. ponticum translocations
were recovered, which carry the resistance genes
Lr19 and Bdv2 through homoeologous pairing in the
presence of gene phlb (Ayala-Navarrete et al., 2007).
Ayala Navarrete et al. (2007, 2009) developed several
EST-based PCR markers for the 7Ai#1L segment,
containing Bdv2. EST-based PCR markers associated
with the Bdv2-harbouring segment (Gao et al., 2009).
A dominant SCAR marker was also developed for the
Bdv?2 resistance gene, which originates on the long arm
of chromosome 7Ail of Thinopyrum intermedium,
by Stoutjesdijk et al. (2001). The BYDYV resistance
locus in P29 and P107 was named as Bdv3 (Ohm and
Anderson, 2007). Anderson et al. (1998) reported

that P29 is completely resistant to CYDV-RPV and
MYDV-RMYV, and moderately resistant to BYDV-
PAV and BYDV-MAV. Kong et al. (2009) suggested
the SSR-Bdv3 diagnostic marker and investigated
the transmission of the Th. intermedium TE segment
carrying Bdv3 in different genetic backgrounds.
Another BYDYV resistance gene, Bdv4, is located
on chromosome 2 (2D-2Ai-2) (Larkin et al., 1995;
Lin et al., 2006). The BYDYV resistance observed
in Zhong 5 was determined to be the same as that
of L1 to BYDV-GAV and more effective against
BYDV-GPV and PAGV (a Chinese wheat yellow
dwarf virus strain related to PAV) (Lin et al., 2007).
Identifying genome regions associated with BYDV
resistance and applying this knowledge to marker-
assisted selection (MAS) would enable faster progress
in cereal crop breeding (Choudhury et al., 2017). As
noted by Shang et al. (2025), comprehensive studies
over the past few decades have focused on identifying
and characterizing candidate genes associated with
resistance to BYDV and its aphid vectors in barley
and wheat. Jiang (2013) indicated that very limited
information exists on commercial cultivars concerning
BYDV resistance genes in wheat. However, current
studies have demonstrated promising improvements in
BYDV resistance genes in wheat, which can be utilized
in breeding programs. A winter wheat variety (G1) was
identified as exhibiting significant aphid resistance
through antixenosis and antibiosis, and restricted
phloem access and salivation by viruliferous R. padi
in the G1 wheat variety were associated with lower
BYDV transmission efficiency (Ilma et al., 2025).
Recently, the wheat variety RGT Wolverine, carrying
the Bdv2 gene, was commercially introduced in the
United Kingdom. Pichon et al. (2022) indicated that a
newly developed wheat variety named RGT Wolverine,
carrying the Bdv2 gene, will allow for observation
under natural conditions in terms of the impacts of the
Bdv2 gene on the evolution and adaptation of YDVs,
the durability of the resistant phenotype, and the impact
of the deployment of a BYDV-resistant material on
the epidemiology of YDV diseases. The ensuing study
flow for developing resistant cereal cultivars through
breeding programs is shown in Figure 2.

BYDYV resistance in barley

Four genes and several QTLs in barley have been
reported to be associated with resistance/tolerance
to BYDV. The first gene, called Rydl, which carries
recessive intermediate tolerance, was identified by
Suneson (1955) in the cultivar ‘Rojo.’ It has been
rarely used in breeding programs. However, the second
resistance gene, Yd2, was identified by Schaller et
al. (1964) and subsequently introduced into many
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barley cultivars, where it was utilized in barley
breeding programs. Later, this gene was defined as
Ryd2 by Segaard and von Wettstein-Knowles (1987).
The barley cultivars carrying the Ryd2 gene exhibit
tolerance to BYDV-PAV and BYDV-MAYV; however,
this gene may be ineffective in inducing resistance
to CYDV-RPV (Niks et al., 2004). Ryd2 has been
located on chromosome 3HL (Collins et al., 1996;
Paltridge et al., 1998), and markers have been used
in breeding programs to incorporate Ryd2 (Ovesna et
al., 2000; Jefferies et al., 2003). The Ryd2 gene was
then transferred to chromosome 3H of the American
spring barley cultivar Atlas 68 by crossing Schaller
and Chim, (1969). Ryd?2 has been successfully used
in breeding tolerant spring and winter barley cultivars
(Delogu et al., 1995; Sip et al., 2006). Some QTL
for tolerance against BYDV-MAYV and BYDV-PAV
have been mapped on chromosomes 7H, 4H, and 1H
(Toojinda et al., 2000). Additionally, a new locus, Ryd3,
derived from an Ethiopian landrace, was identified
and located on chromosome 6H (Niks et al., 2004).
In barley, no complete resistance to BYDV is known
to exist. Through extensive screening, three tolerance
genes, including Rydl1, Ryd2, and Ryd3, have been
identified. Among these, Ryd2, located on chromosome
3HL, has been successfully incorporated into different
commercial spring and winter barley cultivars (Ordon
et al., 2009). Habekuss et al. (2009) determined that
reducing symptom expression and virus extinction in
lines combining Ryd2 and Ryd3. Riedel et al. (2011)
reported that DH lines carrying the combination of
Ryd2 and Ryd3 exhibited a significant reduction in
virus titre, and a significantly higher relative grain
yield was obtained in spring barley DH lines in
comparison to lines carrying only Ryd2 or Ryd3. They
stated that a combination of Ryd2 and Ryd3 confers
quantitative resistance to BYDV-PAV rather than
tolerance. Additionally, significant levels of resistance
to BYDV were obtained by combining the resistance
gene Yd2 with genes detected in moderately resistant
cultivars by Ovesna et al. (2000). An additional two
QTLs for the relative yield after BYDV infection were
detected on chromosomes 2HL and 3HL, accounting
for approximately 50% of the phenotypic variance in
the relative yield after BYDYV infection (Ordon et al.,
2009). Collins et al. (1996) determined that the protein
product of the gene at the xy/P locus could provide a
convenient assay for the selection of Yd2 during the
breeding of BYDV-resistant barley varieties. Recently,
a study reported that Ryd genes limit the success of
infection (low infection rates) and increase the latency
period in infected hosts. These characteristics allow
the Ryd2- and Ryd3-genotypes to be described as
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partially resistant to YDVs (Souquet et al., 2025).
Jarosova et al. (2020) investigated miRNA profiles
in new barley lines and in cultivar Wysor (carrying
one resistance gene, Ryd2), with and without BYDV
infection. They determined that the profile of miRNAs
expressed in Vir8:3 and Vir13:8 in response to BYDV
was similar and differed from that of Wysor. To identify
anovel resistance gene, a study was conducted in 2019.
This study demonstrated that the consistently detected
new gene on chromosome 5H has the potential to serve
as a novel source of tolerance, thereby achieving more
sustainable resistance to BYDYV in barley. Ryd4 was
identified and localized on chromosome 3HL in barley
by Scholz et al. (2009). This resistance was introgressed
from Hordeum bulbosum, the secondary gene pool
of barley. However, it cannot be efficiently used in
barley breeding programs, as indicated by Scholz et al.
(2009). Ryd2 and Ryd3, when combined, are the most
promising approach for barley cultivars expressing
quantitative resistance to barley yellow dwarf virus
(Riedel et al., 2011). Pidon et al. (2024) reported that
high-throughput molecular markers will permit more
targeted selection of resistance in breeding for the use
of Ryd4 in barley varieties.

BYDYV resistance in oat and maize

Tolerance to BYDYV in oat is heritable Mckenzie
et al. (1985). Comeau and Burnett (1984) noted that
breeding for tolerance to BYDV was greatly accelerated
following the severe North American epidemic in 1959.
Then, a source of BYDYV tolerance was identified in
oats, leading to the development of several prominent
BYDV-tolerant lines (Brown and Jedlinski, 1973).
Endo and Brown (1964) found tolerance in oats to
BYDYV, which is heritable and easily identified in
segregating populations. Jenkins (1966) stated that
early BYDV infections caused a decrease in yield in
susceptible oat varieties by 93% and 97% in the more
tolerant oat varieties. Mckenzie et al. (1985) reported
that two to four quantitatively inherited genes could
contribute to the tolerance of the four tolerant oats.
The highest levels of resistance were found in certain
Avena species, including Avena sterilis, A. occidentalis,
A. barbata, A. fatua, A. hybrida, A. macrostachya, A.
nuda, and A. strigosa (Comeau and Burnett 1984).
Landry et al. (1984) developed a model with two to
four genes for the segregation of tolerance in hybrids
between A. sativum and A. sterilis. Virus-derived
transgenic resistance in oat was investigated, and Koev
et al. (1998) proposed a strategy for genetically stable
transgenic resistance to BYDVs applicable to all virus
hosts. In oat (4vena sativa), several QTLs contributing
to BYDYV tolerance have been detected (Ordon et al.,
2009), of which three loci were shown to be of major




importance (Jin et al., 1998). Gray et al. (1993) reported
that resistance to BYDV in a spring oat was released as
a reduction in the accumulation of viral antigen in the
whole plant. In studies on maize, Korber et al. (2013)
reported a high potential for breeding BVDY-resistant/
tolerant maize. Horn et al. (2014) suggested using
SNPs (associated with BYDYV resistance) in marker-
assisted selection, indicating that this approach can
accelerate the breeding process for developing BYDV-
resistant maize genotypes. Horn et al. (2015) found
that a QTL on chromosome 10 explained 45% of the
phenotypic variance, affecting virus extinction traits
and infection rates, and suggested that maize resistance
is oligogenically inherited; this QTL should be utilized
in breeding programs. Recently, Schmidt et al. (2025)
reported BYDV-PAV resistance mechanisms in maize
that act directly on the virus, rather than on its vector,
R. padi.

Conclusions

Managing YDVs successfully depends on several
factors, including the biology of the aphid vectors, the
plant host, and the virus species. The use of insecticides
to control aphid vectors is neither environmentally
friendly nor economically efficient, making it an
unsustainable strategy. However, the use of resistant/
tolerant cultivars is an environmentally safe method to
control viruses. To this end, breeding programmes have
been conducted to find sources of resistance to BYDV/
CYDV and its aphid vectors. So far, resistance sources
have been found in a primary gene pool and a few
species in the secondary gene pool. However, exploring
BYDV and aphid-resistant genes in other related species
may offer future research. Even so, recent advances in
BYDV resistance genes are promising, but further

studies are needed to detect resistance genes against
YDVs. On the other hand, in controlling YDVs, it is
essential to consider cultural practices, as optimizing
planting dates is fairly effective for managing vector
aphids of YDVs. Because late sowing reduces virus
infections by delaying winter cereal emergence after
aphid migrations, early-sowing cereal can significantly
increase virus prevalence during the seedling stage.
Thus, optimizing sowing dates and combating virus
sources, such as grasses, should always be considered
strategies for managing YDVs.

Figure 1. Late sown wheat field (A, on the left), early sown wheat field (B, on the right), resistant/tolerant and
susceptible wheat cultivars to YDVs in the field (C) (ilbag, 2017; Ilbagi, 2020)
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Figure 2. Strategies in breeding programs to develop cereal cultivars against BYDV. Bdvs, BYDV-resistant genes
derived from wheat cultivars; Ryds, BY D V-resistant genes derived from barley cultivars; Gbs, greenbug (Schizaphis
graminum) resistance genes; Sas, English grain aphid (Sitobion avenae) resistance genes; QRps, bird cherry-oat
aphid (Rhopalosiphum padi) resistance QTLs (Shang et al., 2025).
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