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ABSTRACT

In human diet, pulses are an excellent source of carbohydrates, proteins, dietary fibers, vitamins, minerals and other 
bioactive compounds. However, the presence of high concentration of raffinose family oligosaccharides (RFO) limits 
their consumption and acceptance worldwide especially in developed countries. Humans and mono-gas tric animals cannot 
diges t RFO but are fermented by large intes tinal microflora that produces carbon dioxide, hydrogen and methane causing 
flatulence and s tomach discomfort. Hence, it is imperative to develop s trategies to reduce RFO concentration in pulses 
to promote their consumption in human diet around the world.RFO are sucrosyl galactosidessynthesized during the later 
s tages of seed development. RFO accumulation in seeds is affected by crop species, genotype and growing environment. 
Genetic s trategies have been used to reduce the accumulation of RFO in pulses. Several pos t-harves t processing methods 
have also been used to reduce RFO concentration in pulses used for human consumption.
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Introduction
Pulse crops, members of the family Fabaceae, 

are defined by the presence of unusual flowers, 
podded fruits and their ability to fix nitrogen in 
their root nodules (de Faria  et al.1989). The family 
Fabaceae is further divided into three subfamilies: 
Papilionoideae, Caesalpinioideae and Mimosoideae 
(Andrews and Andrews 2017). The three subfamilies 
show dis tinct flower characteris tics: Papilionoideae 
has two partially fused petals, two wing petals and 
a banner like petal; Caesalpinioideae has irregular 
flowers with no dis tinct petals; and Mimisoideae is 
characterized by the presence of spikes. Mos t pulse 
crops belong to the subfamily Papilionoideae. 

Major pulse crops cultivated for human and 
animal consumption include field pea (Pisum sativum 
L.), common bean (Phaseolus vulgaris L.), chickpea 
(Cicer arietinum L.), broad bean (Vicia faba L.), 

pigeon pea (Cajanus cajan L.), cowpea (Vigna 
unguiculata L. Walp.), and lentil (Lens culinaris 
Medik.) (Chibbar  et al., 2010). Two other legume 
crops grown primarily for oil production include 
soybean (Glycine max L.) and peanut (Arachis 
hypogaea L.). Pulse crops in general have gained 
a great significance in crop rotation, due to their 
nitrogen fixing capability that enriches soil with 
nitrogen. 

Production of pulses has cons tantly increased 
during the pas t decades in Canada that contributed 
about 35% and 30% to total world production of 
lentil and beans from 2011-2013, respectively 
(Table 1). Canada is the larges t exporter of lentil/
pea and third larges t exporter of beans in the world 
during 2013 (FAOS tAT 2016). Nutritionally,pulses 
have higher amount of protein (20.6-32.2 g/100 
g dry weight) compared to cereal grains (10-12 
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g/100g dry weight), but are also enriched in the 
essential amino acid lysine that is deficient in cereal 
grains (Chibbar et al., 2010; Shewry and Halford 
2002). The major cons tituents in pulse seeds are 
carbohydrates contributing 49-68% to total seed 
weight (Chibbar et al., 2010). Carbohydrates can 
be classified as monosaccharides, disaccharides, 
oligosaccharides and polysaccharides based on their 
polymeric s tructure (Chibbar et al., 2010). The total 
soluble sugars concentration in pulse seeds range 
from 3 -13 g/100g (Oomah et al., 2011). Total 
soluble sugars in the pulses include monosaccharides 
(ribose, fructose and glucose), disaccharides 
(sucrose, maltose, melibiose) and oligosaccharides 
(raffinose, s tachyose, verbascose, ajugose and 
ciceritol). Among the soluble sugars, concentration 
of galacto-oligosaccharides or raffinose family 
oligosaccharidesishighranging from 2.7 to 5.9 
g/100g in seeds (Sosulski et al., 1982).

RFO or α-galactosides are sucrosyl derivatives 
characterized by the presence of α(1→6) linkage 
between the galactose residue and the C-6 of 
the glucose moiety of sucrose (Gangola et al., 
2014a).A major limitation to increase human 
consumption of pulses is the presence ofhigh seed 
RFO concentration (Gangola et al., 2012).Human 
and monogas tric animals lack alpha-galactosidase 
required to hydrolyze α(1→6)glycosidic linkages, 
therefore RFO remain undiges ted in the upper 
gas trointes tinal tract (Gangola et al., 2014b). The 
undiges ted oligosaccharides are fermented in the 
lower gut by anaerobic bacteria producing carbon 
dioxide, hydrogen and methane (Reddy et al., 
1984). The higher production of these gases causes 
flatulence that can lead to s tomach discomfort, 
abdominal rumblings, cramps, pain, and diarrhea. 
RFO in animal diets have also been associated with 
a reduction in net dietary energy. Adult roos ters 
fed with diets containing 5.3% RFO showed a 20% 
reduction in net metabolizable energy compared to 
a diet containing 1% RFO (Coon et al., 1990). Diets 
with high RFO content caused osmotic imbalance 
(before fermentation by microbial flora) resulting in 
reduced nutrient absorption and protein utilization 
(Wiggins 1984; Van Barneveld 1999). In humans, 
RFO when consumed in low concentrationsmay have 
potential beneficial effects as prebiotics promoting 
the growth of beneficial bacteria like bifidobacterium 
in the large intes tine (Guillon and Champ 2002; 
Martínez-Villaluenga et al., 2008b; Roberfroid 1999; 
Roberfroid  et al., 1998). In rats, diets rich in RFO 
showed an increase in bifidobacterial growth and 
increased immune response (Gulewicz  et al., 2002). 

In humans, consumption of soybean α-galactosides 
increased bifidobacterial and eubacterial growth 
in the large intes tine (Hayakawa et al., 1990; 
Wada et al., 1991). RFO also play an important 
role in plants and participate in several metabolic 
processes (Obendorf and Górecki 2012; Sengupta  
et al., 2015) such as phloem transport, and defense 
responsesduring abiotic (Hannah et al., 2006; 
Nishizawa et al. 2008) and biotic s tresses (Gil et 
al., 2012). RFO are synthesized during later s tages 
of seed development and are pos tulated to confer 
desiccation tolerance (Martínez-Villaluenga et al., 
2008a).

In pulses such as lentil (Tahir et al., 2012) 
and chickpea (Gangola et al., 2013), high RFO 
concentration has been attributed as one of the 
reasons for reduced consumption of pulses by 
humans (Gangola et al., 2014b).Hence, reduction 
of RFO concentration might help to promote human 
consumption of pulses.However, a major consideration 
is that RFO concentration needs to be reduced to an 
optimal amount that reduces s tomach discomfort while 
s till maintaining adequate amounts required for seed 
germination and plant growth.

S tructures of raffinose family oligosaccharides
RFO are ubiquitous in plant seeds (Blӧchl  et 

al., 2007).Raffinose is the firs t member of this 
oligosaccharides family followed by s tachyose, 
verbascose and ajugose (Figure 1). The firs t RFO 
was found and purified in chickpea hence named as 
“Ciceritol” (Quemener and Brillouet 1983). The RFO 
nomenclature is as follows: 

Raffinose [α-D-galactopyranosyl-(1→6)-α-D-
glucopyranosyl-(1→2)-β-D- fructofuranoside]

S tachyose [α-D-galactopyranosyl-(1→6)-α-D-
galactopyranosyl-(1→6)-α-D-glucopyranosyl-   
(1→2)-β-D- fructofuranoside] 

Verbascose [α-D-galactopyranosyl-(1→6) -α-D-
galactopyranosyl-(1→6)-α - D- galactopyranosyl-

(1→6)-α-D-glucopyranosyl-(1→2)-β-D- 
fructofuranoside]

Ajugose  [α-D-galactopyranosyl-(1→6)-α-D-
galactopyranosyl-(1→6)-α-D- galactopyranosyl-
(1→6)-α-D-galactopyranosyl-(1→6)α-D-
glucopyranosyl-(1→2)-β-D- fructofuranoside] 

Ciceritol [α- D-galactopyranosyl-(1→6)-α-D-
galactopyranosyl-(1→2)-1D-4-O-methyl-chiro- 
inositol] 
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Biosynthetic pathway of raffinose 
family oligosaccharide 
Raffinose family oligosaccharides are formed by 

α-(1→6) galactoside linkages between the linear chain 
galactosyl residues and the glucose moiety of sucrose 
(Avigad and Dey 1997) (Figure 1). The three galactosyl 
donors involved in RFO biosynthesis are: UDP-D-
galactose, galactinol and RFO. The biosynthesis of 
RFO is initiated by galactinol synthase (EC 2.4.1.123) 
which catalyzes the transfer of a galactosyl residue 
from UDP-D-galactose to myo-inositol to synthesize 
galactinol (Figure2). Raffinose synthase (EC 2.4.1.82) 
catalyzes the synthesis of raffinose by the transfer of a 
galactosyl residue from galactinol to sucrose. S tachyose 
synthase (EC 2.4.1.67) catalyzes the synthesis of 
s tachyose by the transfer of a galactosyl residue 
from galactinol to raffinose. The enzyme verbascose 
synthase (VS) catalyzes the synthesis of verbascose 
by addition of a galactosyl residue from galactinol to 
s tachyose. The main enzymes involved in the RFO 
pathway, galactinol synthase (GS orGolS), raffinose 
synthase (RS) and s tachyose synthase (S tS) have been 
isolated from some plants and the gene sequences 
coding for these enzymes have been submitted in 
NCBI or patented (Allan and Hitz 2000; Oosumi  et 
al., 1998). RFO are also synthesized by a galactinol 
independent biosynthetic pathway. In Ajuga reptans 
the enzyme galactan:galactan galactosyl transferase 
(GGT), that catalyzes chain elongation by galactosyl 
transfer between two RFO molecules, was reported 
(Bachmann et al., 1994).

In Ajuga reptans two different RFO pools 
were reported: (i) s torage pool - RFO synthesized 
in mesophyll cells, and (ii) transport pool - RFO 
synthesized in intermediary cells involved in 
phloem transport (Bachmann et al., 1994). Further 
compartmentalization s tudies by purification of 
vacuoles from mesophyll cells indicated that GGT, 
s tachyose and higher RFO (verbascose) were vacuolar; 
and GS, S tS, myo-inositol, galactinol, sucrose and 
fructose were extra-vacuolar. Raffinose was reported 
to be dis tributed in both the vacuole and the cytoplasm 
(Bachmann and Keller 1995). S tachyose synthesized 
in the cytoplasm was proposed to be transferred to the 
vacuole through a s tachyose transporter in the tonoplas t 
(Bachmann and Keller 1995). Two allelic variants of 
GolS were isolated in Ajuga reptans (Sprenger and 
Keller 2000). Gene expression, RFO accumulation and 
GS activity sugges ted functional differences among the 
two isoforms. ArGolS1 was predominantly present in 
the s torage RFO pool in mesophyll cells and ArGolS2 
was predominant in transport RFO pools in intermediary 
cells (Sprenger and Keller 2000). 

A. Galactinol synthase
In Cucurbitaceae leaves, GS was a monomeric 

polypeptide of 38-43 kDa with 318-348 amino acid 
residues. GS enzyme activity hadpH optima between 
5.6 and 7.5, and it requiredMn2+ as a cofactor. The 
Km values for UDP-D-galactose and myo-inositol 
ranged from 0.16 – 0.53 mM and 4.0 – 6.5 mM, 
respectively (Keller and Pharr 1996; Peterbauer et 
al., 2001b). Mos t of the s tudies on GS sugges t that 
RFO accumulation is controlled by the concentrations 
of initial subs trates, myo-inositol and sucrose, rather 
than only by galactinol synthase activity (Karner et 
al., 2004).RFO concentration in chickpea seeds also 
showed a significant positive correlation to initial 
subs trates concentrations (Gangola et al., 2013).

The presence of more than a single isoform of 
GolS showing differential expression during abiotic 
s tresses has been reported in several plant species. 
Three genes coding for GS were characterized in 
Arabidopsis thaliana as, AtGolS1, AtGolS2 and 
AtGolS3. All three recombinant AtGolS1, AtGolS2 
and AtGolS3 proteins expressed in E. coli showed 
GS activity. Differential expressions of GS genes were 
obtained during abiotic s tresses, where, AtGolS1 and 
AtGolS2 were induced during drought and salinity 
s tress, but not by cold s tress. The third isoform, 
AtGolS3 was induced by cold s tress but not by drought 
and salinity s tress (Taji et al., 2002).    

In Zea mays, three GolS isoforms were isolated, 
but they showed differential genes expressions. 
ZmGolS1 expression was not observed during seed 
development. Transcript accumulation of ZmGolS2 was 
observed towards later s tages of seed development and 
rapid decrease of transcripts was observed at imbibition 
during seed germination. ZmGolS3 transcripts were 
only detected when seed germination was interrupted 
by desiccation (Zhao et al., 2004). In Coffea arabica 
three allelic variants, CaGolS1, CaGolS2 and CaGolS3 
encoding polypeptides with 388, 334, 344 amino acids, 
also showed differential transcript accumulation under 
drought, salinity and heat s tress conditions. CaGolS1 
showed high expression during s tressed and non-
s tressed conditions, CaGolS2 was expressed only 
during severe water deficit and CaGolS3 was expressed 
during all experimental s tresses but at reduced level 
than CaGolS1 (dos Santos et al., 2011). In tomato 
(Lycopersicon esculentum), LeGolS1 transcripts 
weredetected 35 days after anthesis until seed maturity 
(60 days after anthesis) (Downie et al., 2003). 

Two GS isoforms in Ajuga reptans, ArGolS1 and 
ArGolS2were characterized. ArGolS1was source-leaf 
specific and ArGolS2 participated in RFO transport. 
Gene expression s tudies showed that ArGolS1 
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transcripts were found in mesophyll and ArGolS2 
in intermediary cells explaining its role in phloem 
transport (Sprenger and Keller 2000). Recently, two 
galactinol synthase isoforms, LcGolS1 and LcGolS2, 
were reported in lentil (Lens culinaris Medik.; 
Kannan  et al. 2016). Both the isoforms showed 
expression during lentil seed development however, 
LcGolS2 showed maximum expression at 24 days 
after flowering (DAF) whereas, LcGolS1 transcripts 
accumulated mainly during 26-32 DAF. 

B. Raffinose synthase 
The purification of raffinose synthase (RS) was 

firs t reported by Lehle and Tanner (1973) from Vicia 
faba. The purified RS had a molecular mass of 90 
kDa and exhibited a pH optimum between 6.5 and 
7.0. In a subsequent s tudy pea (Pisum sativum) RS 
was partially purified, which showed apH optimum 
of 7.0, and Km values of 7.3 mM and 22.9 mM for 
galactinol and sucrose, respectively (Peterbauer et al. 
2002a). Expression of a RS cDNA clone in Spodoptera 
frugiperda Sf21 insect cells, produced recombinant RS 
with kinetic properties like those of the purified RS 
(Peterbauer et al., 2002a). A RS cDNA clone isolated 
from rice (Oryza sativa) was expressed in E. coli to 
produce recombinant RS. The rice recombinant RS 
also showed maximum activity at pH 7.0 at 45oC (Li  
et al., 2007). 

In Arabidopsis, five putative RS genes (AtRS1-
5) or seed imbibition proteins (SIP) were described 
(Nishizawa et al., 2008). Among the five AtRS genes 
described, AtRS5 showed high sequence similarity to 
the RS characterized in Pisum sativum. Heterologous 
expression of recombinant AtRS5 showed RS 
activity (Egbert  et al., 2013). Further, raffinose 
concentration was reduced in seeds of Arabidopsis 
AtRS5 mutant. No AtRS5 expression or activity was 
detected in leaves in mutant plants under uns tressed 
or s tressed conditions (Egbert et al., 2013). RS2/
ATSIP2showed sequence similarity to α-galactosidase 
genes. Recombinant protein of ATSIP2 expressed 
in Sf9 insect sys tem showed raffinose specific 
α-galactosidase activity (Peters et al., 2010). RS has 
been reported as the mos t uns table enzyme in the 
RFO biosynthetic pathway (Cas tillo et al., 1990; 
Peterbauer et al., 2002a). Low RFO line (s tc1 mutant) 
identified in Glycine max was associated with RS2 
allele showing low raffinose synthase activity and 
higher accumulation of galactosyl cyclitols (Dierking 
and Bilyeu 2008; Hitz  et al., 2002; Obendorf and 
Gόrecki 2012; Sebas tian et al. 2000). The low RFO 
soybean genotypes showed good field emergence and 
yield like wild type.

S tachyose synthase 
S tachyose synthase (S tS) has been purified from 

adzuki bean, kidney bean, lentil and pea (Hoch et al., 
1999; Peterbauer and Richter 1998; Peterbauer et al., 
2002b; Tanner and Kandler 1968). S tS purified from 
mature lentil seeds had a specific activity of 9.09 
pkat/mg protein, a molecular mass of 88.6 kDa and 
an isoelectric point of 4.8 (Hoch et al., 1999). The 
amino acid sequence of S tS (853-868 amino acids) 
was firs t obtained from Vigna angularis (Peterbauer  
et al., 1999). The molecular weight of S tS was 85 
to 95 kDa, with a pH optima of 6.5 - 7.0 (Richter 
et al., 2000). S tS shows a broad range of subs trate 
specificity which includes inositols and inositol 
O-methyl ethers. S tS from adzuki bean showed no 
conversion of pinitols, whereas lentil S tS catalyzed the 
synthesis of galactopinitol A and ciceritol, in addition 
to s tachyose synthesis (Hoch et al., 1999; Peterbauer  
et al., 2001a). S tS purified from adzuki bean and lentil 
showed no synthesis of verbascose (Hoch et al., 1999; 
Peterbauer and Richter 1998). S tS from Pisum sativum 
synthesized both s tachyose and verbascose (Peterbauer  
et al., 2002b and 2003)

In Ajuga reptans, RFO biosynthesis also occurred 
through a non-galactinol independent enzyme 
galactan:galactan galactosyl transferase (GGT) 
present in leaf vacuoles (Bachmann and Keller 1995; 
Haab and Keller 2002). GGT amino acid sequence 
showed high similarity to α-galactosidases and a 
non-sequence specific vacuolar sorting determinant 
at the C-terminal (Haab and Keller 2002; Tapernoux-
Luthi et al., 2007). The presence of GGT activity 
(neutral pH) was reported in pea seeds with a high 
verbascose concentration and undetectable activities 
in a low verbascose pea line (Obendorf and Górecki 
2012; Peterbauer et al., 2002b and 2003;). Since 
previous reports sugges t that galactinol is exclusively 
cytoplasmic and s tachyose is exclusively vacuolar, 
higher RFO might be produced by the galactinol 
independent pathway (Peterbauer et al., 2001a).

Interes tingly, RFO biosynthetic enzymes have 
shown a wide range of subs trate specificity. Galactinol 
synthase also catalyzed the synthesis of fagopyritol 
B1 where D-chiro-inositol was the galactosyl acceptor 
(Lahuta et al., 2005; Obendorf and Górecki 2012; Ueda  
et al., 2005). Raffinose synthase synthesized galactosyl 
ononitol and galactopinitol A from D-ononitol, 
D-pinitol and O-methyl cyclitols not naturally present 
in pea (Obendorf and Górecki 2012; Peterbauer et al., 
2002a). S tachyose synthase from Lentil also synthesized 
fagopyritol B1 from D-chiroinositol and galactinol. 
Synthesis of galactopinitol B was also catalyzed by lentil 
s tachyose synthase at a lower rate (Hoch et al., 1999). 
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Variation in RFO concentration among 
different legume crops
RFO concentration varies widely among different 

legume crops (Table 2). The concentration and 
composition of RFO depend on type of crop, growing 
environment and the genotype (Andersen et al., 2005; 
Gangola et al., 2013; Martín-Cabrejas et al., 2008; 
Reddy and Salunkhe 1980; Tahir et al., 2011). Reddy 
and Salunkhe (1980) reported verbascose (34.4 g/kg) as 
predominant RFO followed by s tachyose (8.9 g/kg) and 
raffinose (trace) in black gram (Vigna mungo L. Hepper). 
Faba bean was reported to contain higher amount of 
verbascose (27.0 g/kg) while field pea was found to 
have higher amount of s tachyose (27.0 g/kg). Sosulski  
et al. (1982) s tudied the variation in RFO concentration 
in eleven legumes and reported s tachyose as the major 
RFO component in chickpea (Gangola et al., 2014b) 
and lentil flours. They also reported verbascose as 
the predominant RFO in mung bean and fababean. 
Quemener and Brillouet (1983) detected ciceritol in 
chickpea (28.0 g/kg dehulled seed), lentil (16.0 g/kg), 
white lupin (6.5 g/kg), soybean (0.8 g/kg), and bean (in 
traces). Saini and Knights (1984) s tudied the variation 
for total oligosaccharides in desi and kabuli chickpeas 
(seven varieties of each). They concluded that on average 
kabuli chickpeas (14.7, 53.0 and 1.2 g/kg of raffinose, 
s tachyose and verbascose, respectively) contained 3.2% 
higher levels of total oligosaccharides compared to desi 
types (14.8, 50.6 and 1.5 g/kgof raffinose, s tachyose and 
verbascose, respectively). Gangola et al., (2013) also 
reported a relatively higher concentration of total RFO 
in kabuli type (21.1 - 53.8 mmol/kg) compared to desi 
type (15.8 - 53.1 mmol/kg) chickpea genotypes. 

In cowpea (Vigna unguiculataL. Walp.) and soybean, 
RFO concentration contributed more than 50% to total 
soluble sugars (Martín-Cabrejas et al., 2008). Cicek et 
al., (2006) s tudied various soybean seed characteris tics 
including RFO variation using recombinant inbred lines 
among which s tachyose (30 - 60 g/kgseed) was found as 
the major RFO cons tituent followed by raffinose (2 - 9 
g/kgseed). Comparable results were reported by Kumar  
et al., (2010) in soybean seeds showing range of 6.4 - 
25.3 and 20.9 - 71.0 mmol/kgfor raffinose and s tachyose 
concentrations, respectively. 

Andersen  et al., (2005) s tudied the compositional 
variations of α-galactosides in barley and various 
species of Leguminosae and Brassicaceae. The highes t 
concentration of total RFO was reported in Lupin (91.0 
± 26.0 g/kg seeds), while Brassica species contained 
14.0 ± 5.0 g RFO/kg of seeds (only raffinose and 
s tachyose). Barley (Hordeum vulgare L. cv. Vega) 
contained 5.0 g raffinose/kg of seeds, which was the sole 
RFO component. However, Lupin was reported to have 

3.0 - 19.0, 23.0 - 86.0 and up to 35.0 g/kg of raffinose, 
s tachyose and verbascose, respectively (Martinez-
Villaluenga et al., 2008a). Among s tudied species of 
Leguminosae and Brassicaceae, ajugose was present 
exclusively in lupin seeds. L. albus and L. mutabilis 
contained the lowes t ajugose concentration (2.0 - 5.0 and 
2.0 g/kg, respectively) followed by L. angus tifolius (17.0 
- 26.0 g/kg) and, L. luteus (6.0 - 46.0 g/kg; Andersen et 
al. 2005; Martinez-Villaluenga  et al. 2008a). 

Vidal-Valverde et al., (1998) observed higher 
amount of verbascose [22.9 g/kg dry matter (DM)] 
followed by s tachyose (11.0 g/kg DM) and raffinose 
(2.8 g/kg DM) in fababean. Total α-galactosides 
concentration of 18 pea varieties varied from 22.6 to 
63.4 g/kgDM. S tachyose (10.7 - 26.7 g/kgDM) was 
found in higher amount than raffinose (4.1 - 10.3 g/
kgDM), while verbascose was present in fifteen varieties 
ranging from 1.7 - 26.7 g/kgDM (Vidal-Valverde et 
al., 2003). Tahir et al., (2011) analyzed eleven lentil 
cultivars, grown in two different environments, varying 
for s tachyose, raffinose and verbascose concentrations 
that ranged 22.0 - 25.5, 19.5 - 22.2 and 11.5 - 13.3 g/
kgof lentil seed meal, respectively. In another s tudy, 
Lentil seeds RFO concentrations ranged from 9.22 to 
19.68 g/kgfor verbascose and from 23.19 to 27.93 g/kg 
for raffinose+s tachyose (Johnson et al., 2013). 

The significant impacts of genotype, environment 
and their interaction on seed RFO concentrationshave 
been reported in some of the legume crops like soybean 
(Glycine max L. Merr.; Cicek  et al. 2006; Kumar et al., 
2010; Jaureguy et al., 2011), lentil (Lens culinaris Me-
dikus subsp. Culinaris; Tahir et al., 2011) and chickpea 
(Cicer arietinum L.; Gangola et al., 2013). Consequent-
ly, broad sense heritability of RFO traits in legumes has 
been reported from low to high (0.25 - 0.85) depending 
on the crop, genotype and environment (Cicek et al., 
2006; Gangola et al., 2013; Tahir et al., 2011). The en-
vironment influenced variation in RFO concentration 
sugges t their role as antioxidants and phloem-mobile 
signaling compounds during diverse types of s tresses. 
Therefore, environmental conditions like temperature, 
rainfall and light intensity influence RFO concentration, 
i.e. more adverse condition would result in higher RFO 
concentration (ElSayed et al., 2014).

S trategies to reduce RFO in seeds
Two main s trategies have been employed to 

reduce RFO concentration in the seeds: (i) Pos t-harves t 
processing methods, and (ii) Molecular approaches

A. Procession methods
(i) De-hulling
Dehulling of cowpea (Vigna unguiculata L. 

Walp) seeds caused a significant reduction in RFO 
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concentration (Onyenekwe  et al. 2000). However, in 
Lens culinaris varieties, dehulling decreased raffinose 
but increaseds tachyose and verbascose concentrations 
(Wang et al., 2009). This shows that interaction of 
variety and processing method can led to different 
results in different crop species. 

(ii) Germination
Germination has been found to remove RFOs 

quite effectively in legumes (Chilomer et al., 2010; 
Gulewicz et al., 2014; Khalil and Mansour 1995; 
Martín-Cabrejas et al., 2008; Mubarak 2005; Urbano  
et al., 1995; Vidal-Valverde et al., 1998). The decrease 
in RFO concentration during germination has been 
attributed to increased activity α-galactosidase which 
hydrolyses the α(1,6)- linkages, thus increasedthe 
total soluble sugar content and decreased RFO 
concentration (Martin-Cabrejas et al., 2008).

(iii) Aqueous or alcoholic extraction 
Soaking has been commonly used during legume 

processing which decreased RFO concentration in 
severalpulses (Aguilera et al., 2009; Han and Baik 2006; 
Martín-Cabrejas et al., 2004 and 2006; Onyenekwe 
et al., 2000). Reduction due to hydration depends on 
differential solubility of individual oligosaccharides 
and their diffusion rates (Aguilera et al., 2009; Shimelis 
and Rakshit 2007; Upadhyay and Garcia 1988) but 
activation of enzymes like α-galactosidases upon 
hydration may also be responsible for reduced RFO 
concentrations (Aranda et al., 2001; Onyenekwe et 
al., 2000; Wang et al.,2003). Autolysis during soaking 
and extraction in the soak water and the cook water 
also decreased oligosaccharide concentrations in seeds 
(Wang et al., 2009). Ethanol extraction of RFO also 
increased amino acid usage and availability in soybean 
meal and resulted in more protein and energy dense 
product (Glencross et al., 2003; Leske and Coon 1999; 
Leske  et al., 1995). Though it may be an effective 
method, ethanol extraction is not economically viable 
for the large-scale production of low RFO concentration 
seeds (Hagely 2013).

(iv) Changes in temperature or humidity or
pressure treatment 
Heat treatment (e.g. boiling, autoclaving, micro-

wave cooking and extrusion at elevated temperature) 
decreased anti-nutritional RFOs (Alajaji and El-Adawy 
2006; Devindra et al., 2011;El-Adawy 2002; Frias et 
al., 2011; Jenkins et al., 1982; Khalil and Mansour 
1995; Vijayakumari et al., 2007; Wang et al., 2008; 
Wang et al., 2010). It was proposed that the decrease 
in raffinose and s tachyose during cooking was due 

to thermal hydrolysis and formation of disaccharides 
and monosaccharides or other compounds from the 
RFOs (Onigbinde and Akinyele 1983; Wang et al., 
2008). Indus trial process of dehydration also affected 
the α-galactoside content by inducing changes in the 
carbohydrate fraction including hydrolysis of α-galac-
tosides (Aguilera et al., 2009). However, long cooking 
time can also cause loss in proteins which could be 
attributed to partial removal of certain amino acids on 
heating (Aguilera et al., 2009; Rehman and Shah 2005; 
Wang et al., 2010; Youssef et al., 1986). Cooking after 
soaking treatment showed more noticeable decrease 
in RFO content than soaking alone and depended on 
the crop type (Aguilera et al., 2009; Martín-Cabrejas 
et al., 2006; Sánchez-Mata et al., 1999). Blanching has 
also been tried to reduce RFO concentration in pulses 
(Wang et al., 1997). Autoclaving has been sugges ted as 
a better method of processing to reduce RFO concen-
tration in seeds (Vijayakumari et al., 2007). 

(v) Treatment with microbial or plant α- 
galactosidase
Alpha-galactosidase is present in plants, 

microorganisms and animals (Dey and Campillo 
1984; Kim et al., 2002). Endogenous synthesis of 
α-galactosidases increases during seed germination 
and results in lower concentrations of RFO in 
germinating seeds (McCleary and Matheson 1974). 
This is the biochemical principle for using germination 
and fermentation to reduce RFO concentration 
(Devindra  et al. 2011; Glencross et al., 2003; Granito  
et al., 2002; Ibrahim et al., 2002; Torres et al., 2006; 
Vidal-Valverde et al., 1998;Yamaguishi et al., 2009). 
These procedures take advantage of the natural role 
of plant and microbial α-galactosidases. However, the 
potential microbial contamination of germinated grain 
legume seeds decreased their shelf life, making them 
unsuitable for food and feed use (Kadlec et al., 2006). 
While many s tudies showed positive effects for the 
enzymatic removal of RFOs (Anisha and Prema 2008; 
Cao et al., 2010; Girigowda et al., 2005; Leblanc et al., 
2004; Veldman et al., 1993; Yamaguishi et al., 2009), 
s till there are reports where diets supplemented with 
α-galactosidase showed no improvements in protein 
diges tibility (Brasil et al., 2010; Irish et al., 1995; 
Smiricky et al., 2002). The potential of this approach 
is res tricted due to poor s tability of enzymes or their 
origin from microbes without generally recognized 
as safe (GRAS) s tatus (Gote et al., 2004; King et al., 
2002; Viana et al., 2007). Use of isolated enzymes 
is another option but it greatly increases processing 
cos ts. Since α-galactosidase is sensitive to pH and 
heat, and loses its activity rapidly during s torage at 
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room temperature, novel coating treatments have been 
sugges ted such as encapsulation of α-galactosidase in 
chitosannanoparticles that could be developed into a 
pH-sensitive feed enzyme-releasing sys tem (Liu et al., 
2011). Though microbial enzymes are more efficient 
(Falkoski et al., 2006) and provide convenience of 
easy growth and isolation, soybean α-galactosidase 
may be a better choice because it is more suited for 
high protein and buffered environment of soybean 
(Viana et al., 2005). Alpha-galactosidase from coconut 
kernel immobilized to sepharose-4B gel also reduced 
total flatulence by 53-73%. This was advantageous 
as no clogging occurred when soy milk was passed 
through glass columns with enzyme containing gels 
(Dharamsena and Mathew 2002).

(vi) Irradiation
Irradiation is commonly used to control insect 

infes tation and extend the shelflife of pulses (Machaiah  
et al., 1999), but it can also lower RFO levels by their 
rapid degradation (Al-Kaisey 2003; Machaiah et al., 
1999). Gamma radiation along with germination 
showed dis tinct legume-specific quantitative changes 
in RFO concentration without altering their positive 
sensory attributes (Machaiah and Pednekar 2002; Rao 
and Vakil 1983). However,such treatment increase the 
cos t as well as energy required for pulses production. 

B. Molecular approaches to reduce RFO in seeds
(i) Up-regulation of α-galactosidase and 
galactosyl cyclitols synthesis
Alpha-galactosidase is a well-known enzyme for 

RFO break down by hydrolyzing α(1→6) linkage. 
Overexpression of α-galactosidase from coffee (Coffea 
arabica L.) was used to reduce RFO concentration in 
peas (Polowick et al., 2009). The transgenic pea lines 
showed up to 40% reduction in raffinose and s tachyose 
concentrations without affecting seed germination rate 
(96%). Zuo et al., (1996) had showed that although 
much lower oligosaccharide concentrations were 
present in genetically altered soybean meal; no 
differences were noted between conventional and low 
oligosaccharide soybean meal in any of the diges tion 
responses in ileally-cannulated dogs.

Further reductions in the endogenous RFOs could 
be obtained by use of improved vectors, RNAi or 
antisense technology and development of homozygous 
lines (Polowick et al., 2009). It would be a better s trategy 
if α–galactosidase could be activated after harves ting 
to degrade RFO after harves ting. This can be based 
on the transfer of α-galactosidase from a thermophilic 
bacterium into grain legumes which can be activated 
during canning (Griga et al., 2001; Wang et al., 2003). 

Frias et al., (1999) sugges ted an alternative s trategy to 
reduce RFO concentration byincreasing the synthesis 
of related compounds such as the galactosyl cyclitols. 
This would maintain the protective nature of these 
compounds but decrease their flatus potential, as 
the ciceritol was more slowly hydrolyzed by α–
galactosidase than the RFO. Ciceritol is present in 
chickpea and lentil but has not been detected in pea. 
The key to introduce galactinol cyclitols into pea 
with an accompanied reduction in the RFO content 
appears to lie with s tachyose synthase, which has a 
vital role in the synthesis of the galactinol cyclitols and 
in the synthesis of s tachyose (Peterbauer and Richter 
2001b). It represents a link between the RFO and 
galactinol cyclitol pathways (Wang et al., 2003).The 
ratio of D-pinitol and myo-inositol influenced the RFO 
concentration in developing tiny vetch [Vicia hirsute 
(L.) S. F. Gray] seeds (Lahuta et al., 2005). Galactosyl 
pinitols can replace RFOs as reserve carbohydrates 
for seed germination in Vicia villosa (Lahuta and 
Goszczyńska 2009). It has also been reported that free 
cyclitols inhibit S tS and/or VS activity in developing 
seeds of Viciaspecies (Lahuta et al., 2010). Since 
accumulation of d-chiro-inositol s trongly reduced 
accumulation of verbascose, the main RFO in pea 
seeds, transformation of pea with genes encoding 
d-chiro-inositol synthesizing enzymes has been 
sugges ted as a s trategy to reduce the accumulation of 
RFO by inhibiting the synthesis of verbascose (Lahuta 
and Dzik 2011).

(ii) Down-regulation of key biosynthetic enzyme
Galactinol synthase (GS) is considered as 

the firs t committed and key regulating s tep of 
RFO biosynthesis influencing carbon partitioning 
between sucrose and RFO (Nishizawa et al., 2008). 
There has already been a patent regarding genetic 
manipulation of RFO levels by inhibiting galactinol 
synthase activity (Kerr et al., 1993). Bock et al., 
(2009) used an antisense approach to down-regulate 
the expression of galactinol synthase in canola 
(Brassica napus L.). Consequently, a decrease in 
galactinol and s tachyose concentrationswas observed 
in transgenic canola seeds. Out of four main targets 
(myo-inositol concentration, sucrose concentration, 
galactinol synthase and other biosynthetic enzymes) 
to regulate RFO biosynthesis,galactinol synthase has 
been sugges ted as a potential target to reduce RFO 
concentration in chickpea seeds (Gangola et al., 2016)

(iii) Mapping and Breeding
Genetic manipulation of RFO content by plant 

breeding can be an effective tool to prevent flatulence 
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caused by legumes. It is known that there is considerable 
variation in the raffinose and s tachyose content 
among different varieties of legumes. This variation 
can be either natural or created through mutagenesis. 
Transgenics require high energy and time input. Further 
different regulations make it difficult to release varieties 
especially for food and feed purposes. In such cases, 
plant breeding can be a good approach, as used in 
case of soybean. Methods of germplasm screening 
as well as chemical mutagenesis have been used to 
select soybean s trains with low RFO or high sucrose 
(Clarke and Wiseman 2000) and in addition, it also 
helped in determining the genetic basis of some of the 
available low RFO traits (Hagely et al., 2013). These 
soybean lines with variant alleles for low RFO not only 
provided soybean meal that was nutritionally superior 
to conventional soybean meal (Parsons et al., 2000), but 
also a resource to introgress the low RFO phenotypes 
into other genetic backgrounds including elite cultivars 
(Hagely 2013). 

The breeding program for soybeanutilized mutants 
characterized by Hitz et al., (2002)[including LR33 
having low raffinose, s tachyose, myo-inositol, and phytic 
acid (with mutation in MIPS1 gene)] and a soybean 
plant introduction line, PI 200508, (with lower raffinose 
and s tachyose and increased sucrose) identified by Kerr 
and Sebas tian (1998). This linealso showed decreased 
raffinose synthase enzyme activity in maturing seeds 
(Hitz et al., 2002). Further s tudies showed that the line 
had mutant allele for RS2 gene (Dierking and Bilyeu 
2008). Another independent mutant allele of the RS2 
gene was further identified (Dierking and Bilyeu 2009) 
and, recurrent selection and plant breeding have led to 
the development of new soybean lines containing more 
dis tinct alterations in sucrose, raffinose, and s tachyose 
contents. Carbohydrate profiles of lines representing a 
range of characterized RS2 genotypes grown together 
in one location showed that these profiles were 
heritable in general and RS2 genotype appeared to be 
the single larges t determinant of carbohydrate profile 
(Hagley et al., 2013). In another recent s tudy, though 
altered carbohydrate soybeans could produce low RFO 
phenotype across dis tinct locations, the carbohydrate 
profile was found to be affected by the environment 
(Bilyeu and Wiebold 2016)

In pea also, variant s tachyose synthase gene 
resulted in reduced verbascose content in genotype 
SD1 (Peterbauer et al., 2003). Another recent report 
from soybean showed the inheritance of high sucrose 
and low raffinose/s tachyose contents in V99-5089 
soybean seeds. Due to the s trong correlations between 
sucrose and raffinose (r = −0.88), and between sucrose 
and s tachyose (r = −0.96), V99-5089- can be a good 

genotype for use as parent in soybean food-grade 
improvement programs (Mozzoni et al., 2013). Another 
s tudy identified a 33-bp deletion mutant in the putative 
S tS gene (Glyma19g40550) of PI 603176A responsible 
for ultra-low s tachyose content (0.5%) therefore, an 
indel marker associated with low s tachyose content 
was developed (Qiu et al., 2015). Identification of 
variation both natural and through mutation is necessary 
for successful pulses improvement programs to reduce 
RFO concentration in seeds. Anti-nutritional factors 
in legumes can be efficiently and economically 
reduced through molecular breeding. Marker-assis ted 
selection has proven a rapid and reliable method for 
selecting desirable lines for seed quality traits. Recent 
breakthroughs in genomic sequencing of legumes 
(Das and Parida 2014), molecular breeding becomes 
more attractive s trategy for RFO reduction in pulses 
(Hagely 2013). Molecular markers correlating with 
raffinose family oligosaccharides in soybean are 
already available, and the availability of markers in 
other species will also increase with increasing genomic 
information. Although several quantitative trait loci 
(QTLs) and associated markers have been identified for 
sugar content in soybean, it is s till necessary to validate 
these QTLsand confirm associated molecular markers 
in several genetic backgrounds (Mozzoni et al., 2013). 

Concluding remarks
Pulses are environmentally friendly due to their 

nitrogen fixing capability, which reduces the input 
cos ts and enriching the soil with nutrition. Pulses are 
also very nutritionally diverse grains, and rich source 
of proteins rich in essential amino acid lysine that is 
deficient in cereal grains. To completely utilize the 
nutritional benefits of pulses, more emphasis should 
be placed on pulse seed quality improvement. Genetic 
and molecular biological techniques have been used to 
reduce RFO concentration in some pulses. However, 
similar s trategies can be used to improve the pulse seed 
quality to increase the protein concentration, improve 
the amino acid composition and above all enhance 
protein diges tibility so that complete benefit can be 
realized from pulses consumption in human diet. Pulse 
carbohydrates also have very good health benefits 
as pulse s tarch has higher amylose concentration 
that cereal grain s tarch. Research to improve s tarch 
concentration and composition in pulses will add to the 
human health benefits of pulses (Chibbar et al., 2010). 
In conclusion, pulse improvement should focus both to 
increase yield as well as improve pulse seed quality to 
realize the complete benefits of these environmentally 
friendly grains that have the potential to assure global 
food and nutritional security.
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Table 1. Production of pulses in the world and Canada

Legumes Years

World Canada

Area 
harves ted

Total 
production

Area 
harves ted

Total 
production

Export 
value

Chickpea
(Cicer arietinum)

1961-1970 11122839 6671439 NA NA NA

1971-1980 10217041 6511618 NA NA NA

1981-1990 9862896 6674667 NA NA NA

1991-2000 10824941 8050048 52343 72269 7183

2001-2010 10656554 8750603 124410 149350 44986

2011-2013 13052911 12155054 67267 140533 68260

Soybean
(Glycine max)

1961-1970 26548450 34442545 108373 210716 6123

1971-1980 41172412 66468637 204565 439081 10399

1981-1990 53306881 95580502 421870 998160 40962

1991-2000 64109804 135011549 854520 2243850 140805

2001-2010 90766274 213207790 1190820 2979290 539093

2011-2013 106664474 259829434 1680333 4843700 1445843

Lentils
(Lens culinaris)

1961-1970 1688968 969648 NA NA NA

1971-1980 2069018 1233391 10083 6806 NA

1981-1990 2879647 2113347 104720 115630 27346

1991-2000 3454660 2818101 373487 482190 115842

2001-2010 3798903 3485664 714900 938620 418174

2011-2013 4289906 4693991 985500 1650100 883659

Beans, dry
(Phaseolus vulgaris)

1961-1970 23656624 11930983 34288 48739 3391

1971-1980 24016286 13040812 55767 80363 20481

1981-1990 26224268 15649445 42530 71700 34439

1991-2000 25239779 16935482 99258 178450 71581

2001-2010 27378366 20425247 153380 297910 184821

2011-2013 29656745 23422508 90597 207787 214073

Peas, dry
(Pisum sativum)

1961-1970 9524463 9824185 25240 32154 1576

1971-1980 7657213 9096667 34036 55223 8002

1981-1990 8839051 12620974 126360 215560 34303

1991-2000 6869300 12350106 690110 1516870 161560

2001-2010 6300669 10302944 1305530 2677390 457821

2011-2013 6444392 10378984 1233433 3101900 1099015

Cow peas, dry
(Vigna unguiculata)

1961-1970 4355361 1117818 NA NA NA

1971-1980 4185682.2 1273051 NA NA NA

1981-1990 4328346 1548741 NA NA NA

1991-2000 8336560 2967803 NA NA NA

2001-2010 10587941 4965438 NA NA NA

2011-2013 11061517 5472601 NA NA NA

Units for area harves ted, total production and export value are hectare, tonnes and ×1000 US$, respectively.



© Plant Breeders Union of Turkey (BİSAB)

79

Table 2. Variation in RFO (including Ciceritol) concentrations among different legume crops

Legume crops

Concentration (g/kg dry matter)*

Raffinose S tachyose Verbascose Ajugose Ciceritol References

Chickpea                                      
(Cicer arietinum) 4.5 – 21.0 17.2 – 61.5 ND - 45.0 ND ~28.0 1, 3, 4, 5, 6, 7,

12, 13, 14, 15

Soybean                                 
(Glycine max) 6.7 - 11.5 27.5 - 28.5 ND - 3.0 ND 0.5 - 0.8 1, 2, 3, 6, 7

Lupin                                   
(Lupinus albus, L. 
luteus, L. angus tifolius 
and L. mutabilis)

3.0 - 19.0 23.0 - 86.0 ND - 35.0 02.0 - 46.0 6.5 1, 3, 6, 7

Cow pea                                   
(Vigna unguiculata) 4.1 32.2 - 44.4 4.8 ND 0.4 1, 2, 3

Lentil                                          
(Lens culinaris) 3.1 - 10.0 14.7 - 31.0 4.7 - 31.0 ND 16.0 1, 3, 4, 6, 7

Field pea                                 
(Pisum sativum) 6.0 - 14.0 17.1 - 27.0 23.0 ND ND 1, 3, 6, 7, 9, 10

Mung bean                               
(Vigna radiata) 2.3 9.5 18.3 ND ND 1

Fababean                                  
(Vicia faba) 1.0 - 3.0 6.7 - 15.0 14.5 - 31.0 ND ND 1, 3, 4, 6, 7, 9, 11

Black gram                  
(Vigna mungo) Traces 8.9 34.4 ND ND 8

Bean                                 
(Phaseolus vulgaris) <0.5 - 25.0 2.0 - 42.0 0.6 - 40.0 ND Traces 3, 4, 5, 6, 7

1 Sosulski et al., 1982; 2 Martín-Cabrejas et al., 2008; 3 Quemener and Brillouet 1983; 4 Dilis and Trichopoulou 2009; 5 Wang et al., 2010;
6 Andersen et al., 2005; 7 Martinez-Villaluenga et al., 2008a; 8 Reddy and Salunkhe 1980; 9 Huynh et al., 2008; 10 Vidal-Valverde et al., 
2003; 11 Vidal-Valverde et al., 1998; 12 Saini and Knights 1984; 13 Alajaji and El-Adawy 2006; 14 Frias et al., 2000; 15Jukanti et al., 2012
*ND = not detected
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Figure 2: Schematic representation of RFO biosynthetic pathway in plants
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Figure 1: Chemical structure of myo-inositol, UDP- Galactose, galactinol, raffinose, stachyose, 
verbascose, ajugose and ciceritol

Figure 1. Chemical s tructure of myo-inositol, UDP- Galactose, galactinol, raffinose, s tachyose, verbascose, 
ajugose and ciceritol

Figure 2. Schematic representation of RFO biosynthetic pathway in plants
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