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Introduction
In changing global climatic conditions, crop 

plants face various biotic and abiotic s tresses 
throughout their life span, leading to significant losses 
in growth, development, and yield. As the global 
population continues to grow, ensuring environmental 
sus tainability while enhancing agricultural production 
has become a critical goal for agricultural research. 
To meet the increasing food demand by 2050, the 
rate of yield gain mus t be doubled (Anonymous, 
2017). The challenge of developing high-yielding, 

climate-resilient crop varieties has been exacerbated 
by deteriorating climatic conditions, such as higher 
CO2 concentrations, temperature fluctuations, heat 
s tress, and irregular rainfall (Rosenzweig et al., 2014). 
These s tressors emphasize the need to develop new 
crop varieties with improved resis tance agains t biotic 
and abiotic s tresses. Phenotyping, which involves 
characterizing and quantifying plant traits, has 
emerged as a crucial technique for improving crop 
productivity based on better morpho-physiological 
characteris tics (Furbank et al., 2011). In recent years, 
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high-throughput phenotyping platforms have been 
developed, allowing for the analysis of phenotypic 
responses of multiple genotypes under reproducible 
environmental conditions. In the pursuit of meeting 
the growing global demand for food, agriculture 
has experienced rapid transformation, particularly 
in crop breeding techniques. The 21s t century has 
presented unprecedented challenges, necessitating 
a transformative shift in crop breeding s trategies 
to address the needs of a rapidly expanding global 
population. The urgency to enhance crop productivity, 
resilience, and sus tainability has driven researchers and 
breeders to explore novel approaches, leading to the 
emergence of next-generation phenotyping techniques 
as a powerful tool to revolutionize crop breeding.

To tackle the challenges posed by climate 
change and global population growth, crop breeding 
mus t focus on efficient resource utilization and 
environmental adaptability. Phenotyping, which has 
been an essential aspect of crop improvement since 
the domes tication of crops, plays a crucial role in 
es tablishing the genotype-phenotype relationship. 
However, conventional phenotyping methods have 
been limited by low throughput, labor-intensiveness, 
and des tructiveness, leading to a genotype-phenotype 
gap (Walter et al., 2009). To bridge this gap and 
accelerate crop improvement, researchers have 
developed next-generation phenotyping techniques, 
integrating advanced genomic technologies like Next 
Generation Sequencing (NGS) and Single Nucleotide 
Polymorphism (SNP) arrays (Golzarian et al., 2011). 
These technologies have enabled the acquisition of 
genotypic information at a fas ter and more cos t-effective 
rate. However, the development of phenotyping 
methods has not kept pace with genomics, highlighting 
the need for improved phenotyping approaches. Next-
generation phenotyping techniques are revolutionizing 
crop breeding by offering comprehensive and high-
throughput assessments of diverse plant traits, such as 
growth dynamics, s tress responses, nutrient uptake, and 
disease resis tance (Kumar et al., 2015). Advancements 
in technology, data analytics, and genomics have played 
a pivotal role in reshaping the phenotyping landscape, 
allowing breeders to extract valuable insights from 
data-rich phenotyping datasets. The pressing challenges 
faced by agriculture demand fas ter and more effective 
crop breeding s trategies. Next-generation phenotyping 
techniques are crucial for identifying and selecting 
desirable traits at an early s tage of plant development 
which expediting the breeding process. By leveraging 
automation, remote sensing, imaging, and genomics, 
researchers can obtain vas t amounts of data on crop 
traits with unparalleled precision and efficiency. This 

review aims to provide a comprehensive analysis of 
the next-generation phenotyping techniques, different 
imaging techniques, remote sensing with UAVs and 
their potential applications in addressing global food 
challenges.

Phenomics: A novel tool for next generation
phenotyping
Phenomics is a multidisciplinary science that 

emerged from the Human Phenome Project initiated 
in 1997 (Freimer and Sabatti 2003). It focuses on the 
expression of an organism’s genome as observable 
traits within a specific environment (Houle et al., 2010). 
Utilizing sensor-aided, non-des tructive, and high-
throughput automated methods, phenomics enables 
the comprehensive acquisition and analysis of high-
dimensional phenotypic data on an organism-wide scale 
(Kumar et al., 2015). Referred to as the Next Generation 
Phenotyping (NGP), phenomics represents a promising 
solution to bridge the gap between phenotypes and 
genotypes (Ahmed et al., 2023). By employing non-
invasive sensors, automated data processing for trait 
extraction, robotized delivery of plants to sensors, 
and vice versa, as well as robotized plant culturing, 
phenomics offers an automated data management 
pipeline for seamless and efficient analysis of processed 
data (Cobb et al., 2013; Arend et al., 2016). This 
advanced approach allows researchers to delve into 
the inner workings of living plants, gaining valuable 
insights into the relationship between genotypes and 
phenotypes. As such, phenomics holds great potential 
for advancing our unders tanding of plant biology and 
facilitating the development of improved agricultural 
practices.

Traditional Phenotyping
Until the las t decade, plant phenotyping primarily 

relied on traditional agro-morphological traits, 
categorized into qualitative and quantitative data (Liu 
et al., 2010). Qualitative data served for diagnosing 
highly heritable traits unaffected by environmental 
fluctuations, regulated by major genes, while quantitative 
data represented traits influenced by gene interactions 
and affected by genotype and environment interactions 
(G x E) (Bogard et al., 2014). Both types of data were 
scaled using nominal, ordinal, continuous, or binary 
scales to express the degree of trait expression. Plant 
breeding predominantly focused on major traits related 
to agronomic performance, tolerance or resis tance 
to biotic and abiotic s tresses, and quality attributes 
such as nutritional and flavor traits. The International 
Plant Genetic Resources Ins titute (IPGRI) and other 
international plant research organizations es tablished a 
s tandardized “descriptor” scheme to catalog plant traits, 
providing a common language for unders tanding plant 
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characteris tics and facilitating successful characterization 
of plant genetic resources (Kumar et al., 2015). In 
traditional phenotyping technique, des tructive sampling, 
manual visual/ ins trument aided measurements are 
used. This technique is very time consuming and labor 
intensive [Figure 1(A)]. 

Modern Phenotyping 
Plant phenotyping involves s tudying the complex 

interplay between genotype and environment, where 
genotype encompasses all genes, phenotype is the result 
of gene-environment interaction, and phenome refers 
to gene expression under exis ting conditions (Furbank 
and Tes ter, 2011). This rapidly evolving concept aims 
to connect genetic information, plant functionality, and 
agricultural characteris tics through the measurement 
of phenomes, known as phenomics (Bilder et al., 
2009). Crucial for the scientific accuracy of molecular 
breeding, phenotyping bridges the gap between genes 
and phenotypes, particularly in crop-environment 
s tudies. By facilitating the association among genotype, 
phenotype, and environment, phenotyping plays 
a crucial role in achieving sus tainable and efficient 
crop production, considering changing agricultural 
conditions and climate change. Moreover, it allows 
functional s tudies of specific genes, forward and reverse 
genetic analysis, and the development of crops with 
desirable traits (Xiong et al., 2007).

High-throughput phenotyping platforms have 
gained popularity, enabling precise assessments 
of numerous traits in controlled environments, 
while recent advancements in technology have 
also enabled field phenotyping platforms, allowing 
large-scale measurements and analysis in diverse 
growing conditions using imaging techniques with 
sensors on field vehicles or flying platforms which is 
nondes tructive in nature (Tardieu and Schurr 2009). 
Overall, phenotyping is indispensable in unders tanding 
gene networks, predicting global climate changes, and 
devising s trategies for effective crop adaptation and 
production. In the modern phenotyping, non-des tructive 
sampling [Figure 1(B)] and automatic machines were 
used. There is a visualization of multi parameter data at 
one time. One example of modern phenotyping given 
by Benamar et al., (2013). Plants grown in greenhouses 
are then conveyed by robotics via conveyer belt to 
the inspection unit for inspection. There are many 
kinds of imaging platforms, including visual, thermal, 
florescence, and others. Data will then be evaluated 
and interpreted after image processing whereas 
when plants are in the field, information is collected 
by using s tationary or mobile sensors such as aeros tats, 
phenocopters, etc., finally data were analyzed and 
interpretant it.

Exploring the Significance: Why Detailed 
    Phenomics and Multi-Trait Analysis for 
       Transforming Crop Breeding?

Obtaining accurate phenotypes has long been 
a challenge in crop breeding due to the time and 
cos t-intensive nature of direct field measurements. 
However, recent developments in field phenomics have 
revolutionized the s tudy of plant phenotypes across 
diverse environmental conditions. Modern phenomics 
methods, utilizing hyperspectral/multispectral cameras, 
now enable the acquisition of extensive reflectance data 
at various s tages of crop development under different 
environments (Atkinson et al., 2018). This progress 
in phenotyping technology has facilitated swift and 
precise data collection for essential agronomic traits 
for the concept of high-throughput phenotyping (HTP). 
HTP aims to reduce data cos ts per plot and enhance 
early-season prediction accuracy by incorporating 
highly heritable secondary phenotypes that are closely 
correlated to selection phenotypes. Open-source 
software solutions like FieldImageR have further 
minimized processing expenses, making HTP data 
more cos t-effective and accessible for agricultural 
research and crop improvement (Matias et al., 2020).

Furthermore, empirical evidence underscores 
the significance of multi-trait analysis in significantly 
improving prediction accuracies, especially when 
considering genetic and residual correlations within 
the modeling process. The emergence of new 
genomic models that incorporate multiple traits and 
environments has unlocked immense potential for 
harnessing correlations between different variables and 
disentangling diverse effects. These models can account 
for complex interactions such as trait × environment, 
trait × genotype, and trait × genotype × environment, 
leading to a more comprehensive unders tanding of the 
underlying genetic architecture (Montesinos-López et 
al., 2016).

By integrating contemporary Genomic best linear 
unbiased prediction (GBLUP) multi-trait models with 
those incorporating environmental information and 
two & three-way interaction terms, researchers can 
develop a potent, unified and whole genome prediction 
model. This holis tic approach empowers them to 
make more precise and comprehensive predictions, 
offering promising avenues for advancing agricultural 
research and crop breeding endeavors. With the ability 
to consider a wide range of genetic and environmental 
factors, such advanced prediction models pave the way 
for more efficient and effective crop breeding s trategies, 
ultimately contributing to the development of resilient 
and high-yielding crop varieties to meet the challenges 
of an ever-changing world (Crossa et al., 2021).
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Advance tools for plant phenotyping in 21s t  
       Century 

Image acquisition for plant phenotyping:  
       Manual vs. Automated 

Researchers can choose either a manual or 
automated approach for image acquisition in their 
image processing pipeline. The manual method 
involves using a s tandard camera on a tripod, positioned 
optimally to reduce dis tortion, with preprocessing 
s teps to further minimize any dis tortion (Basak et al., 
2019). The setup includes a uniformly colored wall 
(preferably light blue) and s trategically placed light 
sources for appropriate illumination, enabling precise 
image capture of various plants.

On the other hand, transitioning to an automated 
image acquisition process offers significant advantages. 
This includes high-throughput data collection, reduced 
human error, and s tandardized imaging protocols 
(Li et al., 2016). The automated sys tem employs 
sensors, cameras, and robotic sys tems to capture 
images of plants at different growth s tages, facilitating 
efficient s tudy of plant development and responses to 
environmental factors on a large-scale and s tandardized 
level (Hartmann et al., 2011).

Enhanced Image Processing Pipeline for  
       High-Throughput Plant Phenotyping

The image processing pipeline for high-throughput 
plant phenotyping is designed to efficiently process 
large volumes of plant images and extract precise 
information for further analysis (Atkinson et al., 2018) 
(Figure 2). This pipeline involves several key s teps, 
which are detailed below:

i. Region of Interes t (ROI) Definition: The 
pipeline begins by precisely defining the regions of 
interes t within the captured images. This s tep involves 
identifying specific areas or regions where plant analysis 
will take place, ensuring that only relevant parts of the 
images are considered for further processing.

ii. Object Segmentation: Next, it performs advanced 
object segmentation techniques to accurately separate 
the plants from the background or any unwanted 
elements in the image. This ensures that only the plant 
objects are isolated for subsequent analysis, minimizing 
any potential interference.

iii. Object Extraction Display and Verification: 
Once the objects are successfully segmented, the 
pipeline presents the extracted plant objects for 
meticulous visual inspection and verification. This 
feature allows users to assess the accuracy of the 
segmentation and make any necessary adjus tments, 
ensuring the quality of subsequent analysis.

iv. Morphological Refinement: The pipeline applies 
precise morphological operations, such as dilation or 

erosion, to the extracted plant objects. These operations 
serve to refine the object boundaries, remove noise, 
and enhance the accuracy of the subsequent analysis, 
producing more reliable results.

v. Compilation of Comprehensive Analysis 
Results: The pipeline compiles the analysis results for 
all the plants into a s tructured and easily interpretable 
table format. This table consolidates quantitative 
measurements and derived traits for each plant, 
facilitating efficient data analysis and comparison.

vi. Visual Representation of Processing S teps: To 
aid in unders tanding and quality control, the processing 
s teps performed on each plant are visually represented 
as an image s tack. This s tack presents a series of images 
depicting the different s tages of the analysis, providing 
a comprehensive overview of the processing workflow 
and enabling better insights into the data processing 
s teps.

By following this enhanced image processing 
pipeline, high-throughput plant phenotyping platforms 
can effectively handle large volumes of plant images, 
extract precise and relevant information, and present 
the results in a s tructured manner for further analysis 
and interpretation. The pipeline’s advanced techniques 
ensure improved accuracy and efficiency, making 
it an indispensable tool for high-throughput plant 
phenotyping research.

Imaging technology for plant phenotyping 
Plant phenotyping relies on imaging technologies 

that enable non-des tructive and high-throughput 
analysis of plant traits (Omari et al., 2020) (Figure 3). 

Some commonly used imaging techniques are 
summarized below:

i. RGB Imaging: Captures images using s tandard 
color cameras, providing visual information about 
plant appearance and traits related to color, size, 
shape, and canopy coverage. The process involves 
detecting reflectance from the leaf or canopy in the 
visible spectrum (400 to 780 nm) and generating RGB 
images (Basak et al., 2019). This method is low-cos t, 
user-friendly, and visually more interpretable. However, 
it is susceptible to variations in lighting conditions, 
which can impact the accuracy of the results.

ii. Multispectral Imaging: Captures images in 
multiple discrete wavelength bands beyond the visible 
spectrum, enabling analysis of specific traits such as 
chlorophyll content, leaf nitrogen levels, water s tress, 
and disease detection.

iii. Hyperspectral Imaging: Captures images across 
a wide range of narrow and contiguous wavelength 
bands, providing detailed spectral information for 
each pixel (Huang et al., 2012). It allows analysis of 
biochemical and physiological traits at a fine level of 
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detail, used for applications like crop disease detection 
and nutrient s tatus assessment. This method provides 
highly precise information in narrow spectral bands, 
allowing for detailed analysis of specific phenomena 
(Perez-Sanz et al., 2017). However, the extensive image 
processing required for handling the large volume of 
data can lead to high cos ts associated with this approach.

iv. Thermal Imaging: Involves capturing infrared 
radiation emitted by plants, correlating with their 
temperature. Useful for detecting temperature variations, 
identifying s tress conditions, and assessing water use 
efficiency. The technique entails detecting the emission 
of heat radiation from objects in the thermal infrared 
wavelength region (8-14 micrometers) (Tardieu et 
al., 2010) . This method provides a s traightforward 
correlation between the acquired information and canopy 
temperature, making it useful for thermal analysis. 
However, it may be challenging to detect small changes 
in temperature due to its coarse resolution, which can 
limit its precision in some applications.

v. 3D Imaging: Utilizes techniques like s tereo 
vision, s tructured light, or time-of-flight cameras to 
capture depth information of plant s tructures. This 
technology enables the measurement of plant height, 
biomass, branching patterns, and canopy architecture.

vi. Fluorescence Imaging: Captures emitted light 
by plants in response to excitation with specific 
wavelengths. Provides insights into photosynthetic 
activity, s tress responses, and nutrient s tatus.
vii. X-ray Imaging: X-ray imaging provides non-

invasive and high-resolution visualization of internal 
plant s tructures, particularly roots (Flavel et al., 2012). 
This technology facilitates the s tudy of root architecture, 
nutrient uptake patterns, and interactions with the soil 
environment. When combined with advanced image 
analysis algorithms, these imaging technologies enable 
comprehensive and quantitative assessment of diverse 
plant traits. As a result, researchers gain a deeper 
unders tanding of plant growth, development, s tress 
responses, and productivity.

Remote Sensing with Unmanned Aerial Vehicles  
     (UAVs): Expanding Horizons for Enhanced  
       Insights 

Aerial imaging, including plant, field, farm, and 
country scales using different sys tems from drones to 
satellites (Figure 4), has revolutionized agricultural 
research. Drones, also known as UAVs, offer a 
versatile platform capable of rapidly gathering data 
over expansive regions and potentially providing high 
spatial resolution images, with pixel sizes as small as 
1 mm (Zhou et al., 2017). Leveraging advanced IT 
techniques like deep learning, millions of remote sensing 
images can be processed with remarkable accuracy and 

speed (Yao et al., 2017). As a result, remote sensing has 
found widespread application in monitoring drought 
s tress response, evaluating nutrient s tatus and growth, 
detecting weeds and pathogens, predicting crop yields, 
and identifying QTLs. The high-resolution imagery 
obtained by UAVs, capturing canopy color and texture 
features at remarkable spatial and temporal resolutions, 
has become ins trumental in various phenotyping tasks 
(Shi et al., 2019). This wealth of detailed information 
enables efficient feature mining and analysis, facilitating 
tasks such as leaf area index es timation, wheat ear 
identification, weed detection, and seed performance 
evaluation in crop i.e. rapeseed (Nguyen and Lee 2006). 
Furthermore, researchers are actively inves tigating 
optimal resolution determination, highlighting the 
continuous efforts to harness the full potential of UAV-
based remote sensing in agricultural applications. 

Drone Mission Planning and Data Acquisition 
S teps for DJI Phantom Pro V2 in Agricultural 
Monitoring:

i. Mission Planning: Set various parameters to 
prepare the drone for data capturing. Develop a detailed 
flight plan for the drone to follow and collect images. 
Specify camera angle, scan line overlap, Ground 
sampling dis tance, and other parameters to obtain 
images with desired properties.

ii. Image Acquisition: Acquire image data, 
considering challenges such as illumination conditions, 
temperature, and in-scene parameters like background 
obscuring. Implement safety measures to ensure a 
successful flight and data capture.

iii. Image Transfer: After data acquisition, transfer 
the image data along with metadata (e.g., geo-
locations, number of samples, flight speed, exposure, 
dark and white references) to a laptop or secondary 
s torage. Regularly empty the onboard s torage to avoid 
overlapping data from previous missions.

iv. Pre-processing: Mosaic the individual field 
images into a single image for further processing. 
Attach geo-locations to the images and ortho-rectify 
them to prepare for analysis.

v. Data Analytics: Utilize tools like Pix4D to 
calculate vegetation indices for the crop using the index 
calculator. Define the index formula and apply it to 
calculate index images from the ortho-mosaic data.

vi. Visualizing Digital Surface Model (DSM): 
Generate a DSM using Pix4D to calculate crop height 
from the soil surface. The DSM data aids in visualizing 
the crop’s three-dimensional s tructure.

The Loop of Crop Phenotype-to-Genotype: 
        Leveraging Multiomics for Crop Improvement

The integration of crop phenotyping with 
functional genomics s tudies represents a pivotal 
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advancement in crop improvement (Close et al., 2011). 
Through a high-throughput and multiscale phenotyping 
platform, dynamic phenotypic traits of extensive 
crop genetic populations can be efficiently obtained. 
This platform enables the merging of phenotypic 
data with other omics data, such as genomics, 
transcriptomics, proteomics, and metabolomics, 
facilitating comprehensive multiomics analysis (Li et 
al., 2018). By employing QTL mapping and GWAS, 
researchers can effectively mine QTL/genes and 
identify key genetic elements associated with desirable 
traits (Wing et al., 2018). Moreover, when combined 
with genetic transformation techniques, these findings 
can be harnessed to drive significant improvements in 
crop genetics, thereby enhancing crop yield, resilience, 
and quality (Figure 5). The synergis tic approach of 
multiomics-driven phenotyping with functional 
genomics holds immense promise in accelerating 
crop breeding and ensuring food security in the face of 
evolving environmental challenges (Zhang et al., 2019).

High-Precision Phenotyping in Field Conditions
High-precision phenotyping in the field under 

natural conditions is of utmos t importance as pot 
experiments in controlled environments may not 
accurately represent plant behavior in real field 
settings due to limited soil volume and slower 
mois ture extraction patterns (Morisse et al., 2022). 
To effectively phenotype genotypes for various traits, 
s table and less environmentally influenced traits are 
preferred (Halperin et al., 2017). Key physiological 
traits, such as water-use efficiency, can be measured 
through carbon isotope discrimination using leaf 
sampling. Other essential parameters, including 
photosynthesis, chlorophyll content, thermal imaging 
of the canopy, transpiration, s tomatal conductance, 
root depth, and mass, directly or indirectly reflect 
plant water s tatus and functional ability under s tress 
conditions (Figure 6) (White et al., 2012). For traits 
that involve a combination of multiple factors, like 
canopy cooling, can be influenced by high root density, 
s tomatal conductance, and hormonal regulation, field-
based evaluation becomes more pertinent. Screening for 
drought tolerance entails comparing yield performance 
and flowering under irrigated and rainfed conditions, 
determining the drought susceptibility index (DSI) for 
each genotype (Poorter et al., 2016). High-precision 
phenotyping for drought tolerance can be achieved 
through approaches such as dug-out plots with 
mois ture gradients or rainout shelters, which prevent 
raindrops from reaching the plot to assess genotypes 
performance under extreme drought conditions (Gosa et 
al., 2019). Such meticulous phenotyping has led to the 
identification of drought-tolerant genotypes in various 

crops, demons trating traits such as lower DSI and 
improved productivity, along with morphophysiological 
characteris tics conferring drought resis tance.

High-Precision Phenotyping in Controlled  
       Conditions

High-precision phenotyping in controlled 
conditions is a crucial aspect of developing improved 
genotypes through breeding (Weber et al., 2012). While 
secondary morphological traits can be easily assessed in 
the field, traits associated with s tresses require controlled 
environments for better unders tanding (Figure 6). 
Managed facilities play a vital role in increasing the 
accuracy of trait measurements, controlling major 
environmental parameters like temperature, light, and 
humidity (Rebetzke et al., 2013; Vadez et al., 2014). 
Certain traits, such as photosynthetic efficiency, can 
be rapidly and accurately measured using specialized 
imaging sys tems (Tardieu et al., 2017). For root-based 
traits and s tress tolerance, controlled environments like 
greenhouses and growth chambers are essential, as field 
conditions may not adequately capture their variability 
(Kwon et al., 2015). Although various methods have 
been developed for es timating complex traits in 
controlled environments having some pose challenges 
in large-scale phenotyping. Precise phenotyping in 
controlled conditions is pivotal for comprehending 
s tress response and enhancing breeding efforts to 
develop s tress-tolerant genotypes and improve crop 
productivity (Deery et al., 2016).

Future Prospects and Challenges
Phenomics is poised to enter the era of ‘Big 

Data,’ presenting the crop science community with the 
imperative to synergize artificial intelligence technology 
and fos ter international collaborative research. This 
s trategic fusion is fundamental to es tablish a novel 
theoretical framework for analyzing crop phenotypic 
information. The ultimate goal is to cons truct a robus t 
technical sys tem capable of high-throughput, multi-
dimensional, and intelligent phenotyping of crops while 
efficiently handling vas t amounts of big data. This 
sys tem should seamlessly integrate data from diverse 
sources, encompassing multi-modality, multiscale, and 
phenotypic, environmental, and genotypic conditions.

Undoubtedly, the road ahead for crop phenomics 
entails a spectrum of challenges in the forthcoming 
5-10 years, notably in the realm of phenomics, a 
momentous transition into the big-data era is unfolding, 
characterized by its high-throughput capacity, multi-
dimensionality, and multi-scale nature. Our focus 
lies in exploring diverse phenotyping approaches 
encompassing crop morphology, s tructure, and 
physiological data, which exhibit three dis tinct multi-
characteris tics: multi-domain (including phenomics, 
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genomics, and other relevant domains), multi-level 
(spanning from traditional small to medium-scale 
data up to large-scale omics data), and multi-scale 
(encompassing crop morphology, s tructure, and 
physiological data at various levels, from cellular 
to whole-plant levels). Recognizing the limitations 
of single and individual phenotypic information in 
meeting the demands of association analysis within 
the emerging ‘omics’ era, we acknowledge that 
comprehensive and sys tematic phenomics information 
will form the bedrock of future research endeavors. In 
light of the extensive multi-domain, multi-level, and 
multi-scale phenotypic information available, there is 
an urgent imperative to harness the lates t advancements 
in artificial intelligence, particularly in depth learning, 
data fusion, hybrid intelligence, and swarm intelligence. 
These cutting-edge approaches hold significant promise 
in developing robus t big-data management processes, 
essential for supporting critical aspects such as data 
integration, interoperability, ontologies, shareability, 
and global accessibility. By s trategically adopting 
these technologies, we can unlock the full potential 

of the diverse phenotypic data and pave the way for 
transformative advancements in agricultural research 
and crop science on a global scale.

The comprehensive analysis and utilization of 
crop genotype (G) - phenotype (P) - environment (E) 
information is a pivotal objective. As highlighted by 
Coppens et al., (2017), the future of plant phenotyping 
relies on collaborative synergism at national and 
international levels. Addressing the challenges posed 
by multi-omics data necessitates novel solutions, 
notably intelligent data-mining analytics, which can 
effectively unravel the intricate biological processes 
governing plant growth and development. Thus, in 
turn, advances plant breeding efforts, enabling the 
development of climate-resilient and high-yielding 
crops that are urgently required to meet evolving 
environmental demands.
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strategies for effective crop adaptation and production. In the modern phenotyping, non-

destructive sampling [Figure 1(B)], automatic machines were used. There is a visualization of 

multi parameter data at one time. One example of modern phenotyping given by (Benamar et al. 

2013). Plants grown in greenhouses are then conveyed by robotics via conveyer belt to the 

inspection unit for inspection. There are many kinds of imaging platforms, including visual, 

thermal, florescence, and others. Data will then be evaluated and interpreted after image 

processing and when plants are in the field, information is collected by using stationary or mobile 

sensors such as aerostats, phenocopters, etc., finally data were analyzed and interpretant it. 

 

 

 

Figure 1: Traditional phenotyping vs Modern phenotyping          (Source : Saoirse et al. 2020) 
Figure 1. Traditional phenotyping vs Modern phenotyping (Saoirse et al., 2011) 

(A) Traditional phenotyping is destructive (B) Modern phenotyping is nondestructive
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Figure 2. High-throughput image analysis pipeline for top view (A-F) and side 
view (G-L) images. (Hartmann et al., 2011)

Figure 4. Using Drones for Versatile Crop Phenotyping: Different Scales and Sensing Levels.
(Guo et al., 2021)

study of plant development and responses to environmental factors on a large-scale and 

standardized level (Hartmann et al. 2011). 

Enhanced Image Processing Pipeline for High-Throughput Plant Phenotyping 

 The image processing pipeline for high-throughput plant phenotyping is designed to 

efficiently process large volumes of plant images and extract precise information for further 

analysis  (Atkinson et al. 2018) (Figure 2). The pipeline involves several key steps, which are 

detailed below: 

 

Figure 2 : High-throughput image analysis pipeline for top view (A-F) and side view (G-L) images                                                                                        

               (Source: Hartmann et al. 2011) 

i. Region of Interest (ROI) Definition: The pipeline begins by precisely defining the 

regions of interest within the captured images. This step involves identifying specific areas 

or regions where plant analysis will take place, ensuring that only relevant parts of the 

images are considered for further processing. 

Figure 3. Crop Phenotyping and the Diversity of Spectra Utilized for Exemplification. 
(Yang et al., 2020)

 By following this enhanced image processing pipeline, high-throughput plant phenotyping 

platforms can effectively handle large volumes of plant images, extract precise and relevant 

information, and present the results in a structured manner for further analysis and interpretation. 

The pipeline's advanced techniques ensure improved accuracy and efficiency, making it an 

indispensable tool for high-throughput plant phenotyping research. 

Imaging technology for plant phenotyping  

 Plant phenotyping relies on imaging technologies that enable non-destructive and high-

throughput analysis of plant traits (Omari et al. 2020) (Figure 3).  

 

Figure 3: Crop Phenotyping and the Diversity of Spectra Utilized for Exemplification  

               (Source: Yang et al. 2020) 

Some commonly used imaging techniques are summarized below: 

i. RGB Imaging: Captures images using standard color cameras, providing visual 

information about plant appearance and traits related to color, size, shape, and canopy 

coverage. The process involves detecting reflectance from the leaf or canopy in the visible 

spectrum (400 to 780 nm) and generating RGB images (Basak et al. 2019). This method is 

and growth, detecting weeds and pathogens, predicting crop yields, and identifying QTLs. The 

high-resolution imagery obtained by UAVs, capturing canopy color and texture features at 

remarkable spatial and temporal resolutions, has become instrumental in various phenotyping tasks 

(Shi et al. 2019). This wealth of detailed information enables efficient feature mining and analysis, 

facilitating tasks such as leaf area index estimation, wheat ear identification, weed detection, and 

seed performance evaluation in crops like rapeseed (Nguyen et al. 2006). Furthermore, researchers 

are actively investigating optimal resolution determination, highlighting the continuous efforts to 

harness the full potential of UAV-based remote sensing in agricultural applications.  

 

Figure 4: Using Drones for Versatile Crop Phenotyping: Different Scales and Sensing Levels 

(Source: Guo et al. 2021) 
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The Loop of Crop Phenotype-to-Genotype: Leveraging Multiomics for Crop Improvement 

 The integration of crop phenotyping with functional genomics studies represents a pivotal 

advancement in crop improvement (Close et al. 2011). Through a high-throughput and multiscale 

phenotyping platform, dynamic phenotypic traits of extensive crop genetic populations can be 

efficiently obtained. This platform enables the merging of phenotypic data with other omics data, 

such as genomics, transcriptomics, proteomics, and metabolomics, facilitating comprehensive 

multiomics analyses (Li et al. 2018). By employing QTL mapping and GWAS, researchers can 

effectively mine QTL/genes and identify key genetic elements associated with desirable traits 

(Wing et al. 2018). Moreover, when combined with genetic transformation techniques, these 

findings can be harnessed to drive significant improvements in crop genetics, thereby enhancing 

crop yield, resilience, and quality (Figure 5). The synergistic approach of multiomics-driven 

phenotyping with functional genomics holds immense promise in accelerating crop breeding and 

ensuring food security in the face of evolving environmental challenges (Zhang et al. 2019). 

 

Figure 5: Crop Phenotype-to-Genotype Loop                                            (Source: Yang et al. 2020) 

 

Figure 6: Field vs Controlled environment phenotyping                           (Source: Stahl et al. 2020) 

High-Precision Phenotyping in Controlled Conditions 

 High-precision phenotyping in controlled conditions is a crucial aspect of developing 

improved genotypes through breeding (Weber et al. 2012). While secondary morphological traits 

can be easily assessed in the field, traits associated with stresses require controlled environments 

for better understanding (Figure 6). Managed facilities play a vital role in increasing the accuracy 

of trait measurements, controlling major environmental parameters like temperature, light, and 

humidity (Vadez et al. 2014; Rebetzke et al. 2013). Certain traits, such as photosynthetic 

efficiency, can be rapidly and accurately measured using specialized imaging systems (Tardieu et 

al. 2017). For root-based traits and stress tolerance, controlled environments like greenhouses and 

growth chambers are essential, as field conditions may not adequately capture their variability 

(Kwon et al. 2015). Although various methods have been developed for estimating complex traits 

Figure 5. Crop Phenotype-to-Genotype Loop. (Yang et al., 2020)

Figure 6. Field vs Controlled environment phenotyping. (Stahl et al., 2020)
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